Introduction à Numpy

Numpy est une librairie Python qui introduit une nouvelle structure de données l’Array, qui est comme une liste, mais en beaucoup plus rapide.

Installation de Numpy

pip install numpy
#test.py
import numpy
arr = numpy.array([1,2,3,4,5])
print(arr)

Importation de Numpy avec un alias

import numpy as np
arr = np.array([1,2,3,4,5])
print(np.__version__)

Array scalaire 0 dimension

import numpy as np
arr = np.array(42)
print(arr) 

Array unidimensionnel

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr) 

Array 2D

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr) 

Dans le cas particuliers des matrices Numpy a une librairie dédiée numpy.mat

Array 3D utilisé pour représenter les tenseurs.

Checker la dimension d’un array avec ndim

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr.ndim) 

Index des array c’est comme les listes

Le notation est différente ce ce qu’on peut voir en Javascript

import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('2nd element on 1st dim: ', arr[0, 1]) 

Index négatif

pour accéder depuis la fin

import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('Last element from 2nd dim: ', arr[1, -1]) 

Array slicing

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5]) 
print(arr[4:]) 
print(arr[:4]) 
print(arr[:]) 
print(arr[-3:-1]) #Array slicing négatif
print(arr[1:5:2]) #step slicing !cette notation exclut le dernier (tem index 5 n'est pas pris en compte)

Slicing 2D array

import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[1, 1:4])  # sur un array
print(arr[0:2, 2]) # sur deux array
print(arr[0:2, 1:4]) # sur deux array de 1 à 4

Les datatype de Numpy



		
		
			
Retour en haut